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Something old, something new, something
oorrowed, something blue: the anaerobic
microbial ancestry of aerobic respiration

Jennifer B. Glass @,"* Claire E. Elbon @, and Loren Dean Wiliams © 2

Aerobic respiration evolved by bricolage, with modules cobbled together as mi-
crobial biochemistry coevolved with Earth’s geochemistry. The mitochondrial
electron transport chain represents a patchwork of respiratory modules inherited
from microbial methanogenesis, iron oxidation, anoxygenic photosynthesis, and
denitrification pathways, and preserves a biochemical record of Earth’s redox
environment over its four-billion-year history. Imprints of the anoxic early Earth
are recognizable in Complex I’s numerous iron-sulfur cofactors and vestigial
binding sites for ferredoxin, nickel-iron, and molybdopterin, whereas the more
recent advent of oxygen as a terminal electron acceptor necessitated use of
heme and copper cofactors by Complex IV. Bricolage of respiratory complexes
resulted in supercomplexes for improved electron transfer efficiency in some
bacteria and archaea, and in many eukaryotes. Accessory subunits evolved to
wrap mitochondrial supercomplexes for improved assembly and stability. Environ-
mental microbes with ‘fossil’ proteins that are similar to ancestral forms of the respi-
ratory complexes deserve further scrutiny and may reveal new insights on the
evolution of aerobic respiration.

Deep breaths: the evolution of aerobic respiration

Broadly defined, respiration is the transfer of electrons coupled to the pumping of ions (protons or
sodium ions) across the membrane with formation of a transmembrane gradient of protons or so-
diumions. This gradient then discharges through ATP synthase to make ATP. Aerobic respiration
in mitochondria and many free-living bacteria starts with Complexes | and II, which transfer elec-
trons to ubiquinone (UQ) from NADH and succinate, respectively. Reduced UQ carries electrons
through the inner membrane to Complex I, which transfers them to cytochrome ¢ and then on to
Complex IV, where the terminal reduction of molecular oxygen (O,) to water occurs. In the pro-
cess, Complexes |, lll, and IV pump a total of ten protons across the membrane, generating a pro-
ton gradient that drives ATP synthesis.

The evolution of aerobic respiration is an example of bricolage (see Glossary) [1]. Respiratory
complexes in our mitochondria did not originate with the same substrates and cofactors that
today shepherd electrons from the food we eat to the oxygen (O,) we breathe; rather, aerobic
respiration emerged from bricolages of anaerobic respiratory modules that transport electrons
to a terminal oxidase. Over billions of years of evolution, prokaryotic respiratory complexes
evolved with the rising oxidation state of the Earth’s surface, from the hydrogen (H,) redox
potential to the O, redox potential, from iron-sulfur proteins to heme proteins and blue-copper
proteins [2—5]. Individual proteins merged into modules, which assembled into multimodular
complexes [6], which coalesced into electron transport chains. Each of these complexes has
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The mitochondrial electron transport
chain is derived from modular enzyme
complexes assembled from microbial
pathways, including methanogenesis,
iron oxidation, anoxygenic photosyn-
thesis, and denitrification.

The vestiges of ancient anaerobic
respiratory complexes are especially
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a bricolage of modules, each of which
originated with a function different from
that which they have today.

Ancestral Complex Il likely ran in the op-
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anoxygenic photosynthetic bacteria.
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teria may have contributed to adaptation
of Complex IV to higher oxygen levels.
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its own multi-billion-year history. Just as unpeeling the onion of the ribosome can transport us
back to the origin of translation, unraveling respiratory molecular machines can teleport us
back to the very beginning of microbial metabolism.

Something old: the Q module at the core of Complex |

In many bacteria and most eukaryotes, Complex | (NADH:Q oxidoreductase) contains three mod-
ules [7], each of which performs a key function: the N module accepts electrons from NADH
(Figure 1A), the Q module passes the electrons to the quinone Q (Figure 1B), and the P module
translocates protons across the inner membrane (Figure 1C). The original ancestor of the Q mod-
ule likely arose prior to the divergence of archaea and bacteria [8], and probably functioned as a
hydrogenase [9-11]. Phylogenetic analyses suggest that Complex I's Q module evolved from
nickel-iron membrane-bound hydrogenases most like those found in methanogenic archaea
[2,11]. As the oxidation state of the Earth rose, the Q module lost its hydrogenase activity and
began passing electrons to quinone-based coenzymes with higher midpoint redox potential
[2,12], first probably to the low-potential menaquinone (MQ), and eventually to the high-
potential UQ in aerobic bacteria (Figure 1D) and plastoquinone (PQ) in cyanobacteria (and,
later, in plants). Electron transport via lipid-soluble quinone/quinol coenzymes enabled life to har-
vest more energy per electron by expanding beyond a single complex into a chain of complexes
along the inner membrane.

Something new: growth of Complex |

Over billions of years, Complex | continued growing by bricolage. Merger of the Q module with a
transmembrane monovalent antiporter (the P module; Figure 1C) enabled coupling of transport
of electrons and antiport of monovalent ions [13-15]. Acquisition of the P module was a multistep
event, with antiporter subunits likely acquired one at a time, as reflected in the fact that different
prokaryotic relatives of mitochondrial complex | have different numbers of antiporter subunits
[2]. This bricolage necessitated synchronization of electron transfer with slower rates of ion trans-
location [16]. These ions were primarily sodium in more ancient respiratory pathways, while pro-
tons became widespread in more recently evolved respiratory pathways [17,18]. After the
acquisition of the N module, the Q module acquired numerous iron-sulfur clusters from agglom-
eration of iron-sulfur enzymes in order to establish a connection with the remote NADH-binding
site [16]. The presence of vestigial binding sites for ferredoxin and molybdopterin in the N module
suggests that ancestral forms used lower redox potential coenzymes, which were later replaced
by higher redox-potential NADH and flavin mononucleotide (Figure 1E) [2,16,19,20].

Something borrowed: Complexes Il and lli

Complex Il (succinate dehydrogenase), composed of heme b, three iron-sulfur clusters, and flavin
adenine dinucleotide (FAD) (Figure 1G), is shared with the citric acid cycle and provides another
source of reduced UQ (ubiquinol) to the respiratory chain. Succinate dehydrogenase is thought to
have evolved from membrane-bound fumarate reductase in anaerobic fumarate respiration, which
is essentially the same enzyme run in reverse (Figure 1G), with electrons from a lower redox-
potential quinal, likely menaquinol [21]. As atmospheric O levels rose and anaerobic terminal elec-
tron acceptors like fumarate were replaced by O, (see discussion of Complex IV later), fumarate
reductase was refashioned to serve as a source of reduced UQ with electrons from succinate.

Complex Il (cytochrome bc; complex) is an example of ‘borrowed’ machinery that is used for the
same purpose in a different metabolism. Modern Complex lll accepts two electrons from reduced
UQ and shuttles the electrons through the Rieske iron-sulfur protein to cytochrome ¢, the high-
potential redox carrier that can reduce O, to water in Complex IV (Figure 1H). The other electron
is recycled back to the UQ pool via cytochrome b in a so-called Q-cycle [22]. Complex I
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Glossary

Antiporter: a membrane protein that
transports two molecules at the same
time in opposite directions.

Bricolage: from the French word
meaning construction (as of a sculpture
orastructure of ideas) achieved by using
whatever comes to hand; used here to
mean the appearance of new molecular
structures by combining and alteration
of pre-existing ones.
Chemolithotroph: an organism that
uses inorganic reduced compounds as
a source of energy.

Coenzyme: an organic compound that
binds to an enzyme to catalyze a reac-
tion.

Cofactor: a non-protein chemical
compound or metal ion required for an
enzyme's role as a catalyst.

Great Oxidation Event: the period
~2.4 bilion years ago when molecular
oxygen (O,) produced by cyanobacteria
began to accumulate in the Earth’s
atmosphere and shallow oceans.
Magnetotactic bacteria: bacteria that
produce magnetic minerals to align with
the Earth’s magnetic field and access
redox gradients for respiration.
Respirasome: macromolecular
assemblies of the respiratory chain
complexes |, lll, and IV in the inner mito-
chondrial membrane.

Respiratory supercomplex: mem-
brane-bound clusters of respiratory
complexes.

Supercomplex: a stable association of
two or more complexes of biological
macromolecules that occur separately
elsewhere.
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Figure 1. The respirasome evolved via bricolage of subunits, with modern cofactors at higher redox potential than original cofactors. Top: Mammalian respirasome
(PDB 5J4Z; CI.Clll»:CIV), Cll (PDB 1NEK), and cytochrome ¢ (PDB 1HRC). Bottom: Cofactors and coenzymes in aerobic electron transport chain, plotted by redox potential, in
millivolts, from electron donor (NADH at —320 mV) to electron acceptor (O, at +815 mV). Inorganic cofactors in mitochondrial respiration include iron-sulfur clusters (labeled with Cl
annotation), heme molecules, and copper atoms, where red spheres are iron atoms, yellow spheres are sulfur atoms, and purple spheres are copper atoms. Only redox-active
functional groups are shown for organic cofactors (NADH, FMN, Moco, UQ, MQ, FAD), with each small green sphere representing a ribonucleotide substituent. Ancestral
coenzymes and cofactors (Fd, Moco, NiFe, MQ, and Complex lll cofactors) have lower redox potentials than their modern replacements and are shown as partially transparent,
with the teal sphere representing a molybdenum atom and the blue sphere representing a nickel atom. Lines represent electron transfer through the modules, with ancestral
pathways shown as partially transparent. Broken lines indicate flow from quinones to Complex lll, bypassing Complex II. Each ‘spotlight’ color represents a respiratory module:
red/green/purple, N/Q/P-modules (Complex I); orange, succinate dehydrogenase (Complex Il); pink, cytochrome be; complex (Complex ll); blue, cytochrome ¢ oxidase (Complex
IV); brown, cytochrome c; yellow, additional subunits in mammalian respirasome. Circled labels A-J are described in the main text.

Abbreviations: CIHV, Complex I-IV; cyt, cytochrome; FAD, flavin adenine dinucleotide; Fd, ferredoxin; FMN, flavin mononucleotide; fum, fumarate; Moco, molybdopterin; MQ,
menaquinone/menaquinol; NiFe, nickel-iron cofactor; O,, molecular oxygen; ox, oxidized; red, reduced; suc, succinate; UQ, ubiquinone/ubiquinol.

translocates four protons across the membrane per two-electron cycle. The cytochrome b-Rieske
protein core of Complex Ill appears to have originated in anaerobic anoxygenic photosynthetic
bacteria [23-26], and then spread through lateral gene transfer. This evolutionary scenario is con-
sistent with the requirement of the Q-cycle for high-potential electron acceptors, which were limited
to photosynthetic charge separation on the anoxic early Earth [25]. Greater availability of O, after
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the Great Oxidation Event resulted in more widespread use of higher redox potential
quinones (e.g., UQ instead of MQ) and a corresponding rise in the redox potential of cofactors
in Complex Ill [27] (Figure 11).

Something blue: Complex IV

Complex IV (cytochrome ¢ oxidase) couples proton translocation to reduction of O,. In mitochondria
and their bacterial relatives, Complex IV contains two copper (Cu) cofactors (Figure 1J): a binuclear
Cup that passes electrons from cytochrome ¢ to the catalytic site and is thought to have evolved
from a combination of two blue copper-type cofactors [28], and a mononuclear Cug that forms
the catalytic site with a high-spin heme and a crosslinked tyrosine [29]. Mitochondrial heme-
copper oxidase (HCO) belongs to type A1 of the HCO superfamily. A-type HCOs have lower affinity
for O,, and a higher proton-pumping efficiency (four protons per catalytic cycle) than C-type HCOs in
bacteria adapted to low O,, which pump two protons per catalytic cycle [29]. The HCO superfamily
also includes nitric oxide reductase, which contains an Fe atom in place of Cug and performs the
second to last step in the anaerobic respiratory pathway of complete denitrification [30].

The evolutionary history of Complex IV has long been hazy. High conservation of histidine residues
serving as metal ligands and 12 transmembrane helices forming a catalytic subunit structure led to
a consensus that all cytochrome ¢ oxidases in the HCO family share a common ancestor [31-33].
Yet the lack of an obvious root to the HCO phylogenetic tree has frustrated efforts to resolve that
ancestor [30,34]. The similarity of the Cua site in cytochrome ¢ oxidase subunit Il and the Cua
site in the last enzyme in denitrification, nitrous oxide reductase, as well as the homology between
nitric oxide reductases and cytochrome ¢ oxidase, led to the hypothesis that aerobic respiration
evolved from a bricolage of the last two enzymes in denitrification [35,36], with nitric oxide reduc-
tase predating cytochrome ¢ oxidase [29,37]. While A-type HCOs are inhibited by nitric oxide
[38-40], C-type HCOs reduce nitric oxide to nitrous oxide [26] using the same mechanism as O,
reduction [41], suggesting that the ancestral HCO might have reduced nitric oxide as well as O».
Ancestral HCOs might also have served primarily as electron sinks, with proton pumping for energy
conservation as a later addition [42]. The role of ancestral HCOs in denitrification is also supported
by the role of HCO homologs in denitrification and detoxification of reactive nitrogen species [31]
and the geochemical likelihood that nitric oxide would likely have been more bioavailable than O,
before the Great Oxidation Event ~2.4 billion years ago (Ga) [37,43], especially given evidence of
the onset of nitrification and denitrification by ~2.5 Ga [44-46]. An alternative theory posits that
the widespread nature of A-type enzymes suggests antiquity, while the more patchy distribution
of C-type enzymes and nitric oxide reductases implies their more recent origin [47,48].

Newer phylogenies offer another explanation: that all the sequences from laboratory cultures
were relatively young forms of the enzyme, and a C-type enzyme from environmental
metagenomes of Nitrospirae is more similar to the originator of all extant HCO types [49,50].
Intriguingly, ancestral features (two transmembrane helices at the N terminus and four protonable
residues lining the K/K® channel) are shared between most A- and C-type oxidases [46]. Further,
one of the deepest branching C-type enzymes belongs to Leptospirillum, an acidophilic, iron-
oxidizing bacterium that lives in low-O,, low-pH environments [50,51]. These environments
also host chemolithotrophic basal proteobacteria, such as Acidithiobacillus, which use the
rus pathway to oxidize ferrous iron and sulfide, and contain a deep-branching form of heme A
synthase [51]. Likewise, magnetotactic alphaproteobacteria may be a ‘living fossil’ in the evolu-
tionary history between C-type and A-type cytochrome ¢ oxidase [33]. Ancestors of iron-
oxidizing bacteria are implicated with the origins of crucial genes for the eventual emergence of
mitochondrial HCOs, and bioleaching of copper sulfides by these organisms may have liberated
copper for use in HCOs [51].
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Wrapping it all together: respiratory supercomplexes and accessory subunits
Bricolage of bricolages emerged through the evolution of respiratory supercomplexes, which
are especially prevalent in mitochondrial respiratory chains. Supercomplexes are beneficial
because they increase electron transport efficiency by decreasing the distance required for
diffusion of electron carriers [52] while also minimizing production of harmful reactive oxygen
species [53]. Complexes llI+IV supercomplexes are well known in yeast mitochondria [54] and
also occur in some bacteria and archaea [55,56]. Complex |+l supercomplexes are common in
plant mitochondria [57]. The most abundant respiratory supercomplex in mammals, also
known as the mitochondrial ‘respirasome’, contains Complexes I+lll+IV in a ratio of 1:2:1 [58].
The same three complexes form a 1:4:4 supercomplex in Paracoccus denitrificans [59).

The last mitochondrial common ancestor, which lived ~1.55 Ga [60], already possessed
Complexes -1V, as well as additional bioenergetic and detoxification systems that were later
lost in animal lineages, but retained in some basal eukaryotes, especially those that regularly
encounter low-oxygen environments [61,62]. The widespread occurrence and diverse composi-
tion of respiratory supercomplexes across the tree of life suggests that supercomplexes indepen-
dently evolved multiple times in different lineages, before and after the endosymbiotic event that
created the mitochondrion.

After the endosymbiotic event, bricolage continued in eukaryotic mitochondria with the buildup of
additional subunits involved in assembly, stability, and regulation around each respiratory com-
plex or supercomplex (Figure 1, yellow). Over two dozen additional subunits were added to mito-
chondrial Complex |, on top of the 14 core subunits shared with bacteria [63]. Four additional
accessory subunits were added to mitochondrial Complex Il in plants [64]. Mammalian Complex
lIland IV were appended by six and 11 subunits, respectively, in addition to three core subunits in
each. Intricate coordination is required to produce and assemble respiratory complexes from
combinations of products from mitochondrial and nuclear genomes [65]. While most respiratory
complex genes are encoded by the nucleus, a core group of respiratory complex genes are uni-
versally retained in mitochondrial genomes. Retention of these core genes is generally believed to
be due to the high hydrophobicity of the membrane proteins they encode, which complicates
mitochondrial import [66].

Concluding remarks and future perspectives

The mitochondrial electron transport chain evolved over billions of years from bricolage of anaer-
obic respiratory proteins. But much remains to be resolved (see Outstanding questions). To
rewind the clock on the evolution of respiratory complexes, ancestral sequence reconstruction
(ASR) of respiratory enzymes offers a powerful technique to study the characteristics and bio-
chemistry of ancient proteins [67,68] and could inform about the nature of key evolutionary inter-
mediates in aerobic respiration. Estimates of the timing of these deep evolutionary events rely on
molecular clock studies, which are challenging due to the absence of body fossils for Precam-
brian microbial lineages. While mitochondrial genes have been used extensively to identify and
date the divergence of animal lineages [69], extending these dates to the microbial origins of
the HCO superfamily is notoriously challenging. Geobiological studies that merge environmental
constraints from the rock record with protein substrate requirements, such as the O, levels
required for heme A synthesis [51], hold promise for finally filling in the timeline on the history of
respiratory enzymes.

Although textbooks often present mitochondrial Complexes I-IV and ATP synthase as the sole
example of respiration, there are in fact multitudes of multicomplex respiratory chains in bacteria
and archaea. Each of these respiratory chains evolved to harvest redox energy to generate a
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QOutstanding questions

When did the last common ancestor of
each mitochondrial respiratory complex
emerge?

What are the biochemical characteristics
of uncharacterized deep-branching
clades (e.g., ‘clade G’ in cytochrome
bef/bc complexes and heme-copper
oxidase homologs)?

How can ancestral sequence
reconstruction inform the evolution of
respiration?

What is the evolutionary connection, if
any, of the Cup site in heme-copper
oxidase and the Cup site in nitrous
oxide reductase?

What was the impact of the
evolution of respiratory complexes
on Earth’s atmospheric composition
(e.g., methane, nitrous oxide, oxygen)
over its four-billion-year history?
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gradient of monovalent ions across the membrane to drive ATP synthesis [70-73]. These diverse
bacterial and archaeal complexes deserve scrutiny as they may hold clues to missing links in the
evolution of aerobic respiration prior to the emergence of eukaryotes. Studies are inherently lim-
ited by biochemical knowledge of little-studied protein ‘fossils’ of respiratory evolution, such as
the uncharacterized clade G of cytochrome bgf/bc complexes [24]. These genes are often pres-
ent in lesser-studied environmental microbes from far afield locales, as opposed to the better
characterized isolates from soil or the human microbiome. Ongoing metagenomic sequencing
efforts of diverse environments will continue to be valuable for fleshing out deep-branching line-
ages, as recently demonstrated by phylogenetic placement of cytochrome ¢ oxidases from
metagenomic assembled bins [28-33,74]. Additional crystal structures from protein homologs
of complexes on the mitochondrial electron transport chain, such as the hydrogen gas-evolving
membrane-bound hydrogenase [75,76], will be insightful for deconvolving the structural founda-
tions of bricolage over the eons. Such investigations will help to fill in missing pieces of the puzzle
to reveal the full picture of the anaerobic origins of aerobic respiration.
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